Counting plane cubic curves over finite fields with a prescribed number of rational intersection points

نویسندگان

چکیده

For each integer $k \in [0,9]$, we count the number of plane cubic curves defined over a finite field $\mathbb{F}_q$ that do not share common component and intersect in exactly $k\ \mathbb{F}_q$-rational points. We set this up as problem about weight enumerator certain projective Reed-Muller code. The main inputs to proof include counting pairs component, configurations points fail impose independent conditions on cubics, variation MacWilliams theorem from coding theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Rational Points on Curves over Finite Fields (Extended Abstract)

We consider the problem of counting the number of points on a plane curve, given by a homogeneous polynomial F E Fp[x, y, 21, which is rational over the ground field IFp. More precisely, we show that if we are given a projective plane curve C of degree n, and if C has only ordinary multiple points, then one can compute the number of IFp-rational points on C in randomized time (logp)" where A = ...

متن کامل

Counting Points on Curves over Finite Fields

Stanford University) Abstract: A curve is a one dimensional space cut out by polynomial equations, such as y2=x3+x. In particular, one can consider curves over finite fields, which means the polynomial equations should have coefficients in some finite field and that points on the curve are given by values of the variables (x and y in the example) in the finite field that satisfy the given polyn...

متن کامل

Counting points on curves over finite fields

© Association des collaborateurs de Nicolas Bourbaki, 1972-1973, tous droits réservés. L’accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier ...

متن کامل

Rational Points on Curves over Finite Fields

Preface These notes treat the problem of counting the number of rational points on a curve defined over a finite field. The notes are an extended version of an earlier set of notes Aritmetisk Algebraisk Geometri – Kurver by Johan P. Hansen [Han] on the same subject. In Chapter 1 we summarize the basic notions of algebraic geometry, especially rational points and the Riemann-Roch theorem. For th...

متن کامل

On Curves over Finite Fields with Many Rational Points

We study arithmetical and geometrical properties of maximal curves, that is, curves defined over the finite field Fq2 whose number of Fq2 -rational points reachs the Hasse-Weil upper bound. Under a hypothesis on non-gaps at rational points we prove that maximal curves are Fq2 -isomorphic to y q + y = x for some m ∈ Z.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European journal of mathematics

سال: 2021

ISSN: ['2199-675X', '2199-6768']

DOI: https://doi.org/10.1007/s40879-021-00472-x